Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Medicine Today ; 24(5):37-43, 2023.
Article in English | Academic Search Complete | ID: covidwho-20242537
2.
Front Immunol ; 13: 1032911, 2022.
Article in English | MEDLINE | ID: covidwho-2198878

ABSTRACT

Background: Long-term immunity to SARS-CoV-2 infection, including neutralizing antibodies and T cell-mediated immunity, is required in a very large majority of the population in order to reduce ongoing disease burden. Methods: We have investigated the association between memory CD4 and CD8 T cells and levels of neutralizing antibodies in convalescent COVID-19 subjects. Findings: Higher titres of convalescent neutralizing antibodies were associated with significantly higher levels of RBD-specific CD4 T cells, including specific memory cells that proliferated vigorously in vitro. Conversely, up to half of convalescent individuals had low neutralizing antibody titres together with a lack of receptor binding domain (RBD)-specific memory CD4 T cells. These low antibody subjects had other, non-RBD, spike-specific CD4 T cells, but with more of an inhibitory Foxp3+ and CTLA-4+ cell phenotype, in contrast to the effector T-bet+, cytotoxic granzymes+ and perforin+ cells seen in RBD-specific memory CD4 T cells from high antibody subjects. Single cell transcriptomics of antigen-specific CD4+ T cells from high antibody subjects similarly revealed heterogenous RBD-specific CD4+ T cells that comprised central memory, transitional memory and Tregs, as well as cytotoxic clusters containing diverse TCR repertoires, in individuals with high antibody levels. However, vaccination of low antibody convalescent individuals led to a slight but significant improvement in RBD-specific memory CD4 T cells and increased neutralizing antibody titres. Interpretation: Our results suggest that targeting CD4 T cell epitopes proximal to and within the RBD-region should be prioritized in booster vaccines.


Subject(s)
CD4-Positive T-Lymphocytes , COVID-19 , Humans , SARS-CoV-2 , Antibodies, Neutralizing , Epitopes, T-Lymphocyte
3.
Med (N Y) ; 3(8): 531-537, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1983656

ABSTRACT

The protection provided by natural versus hybrid immunity from COVID-19 is unclear. We reflect on the challenges from trying to conduct a randomized post-SARS-CoV-2 infection vaccination trial study with rapidly evolving scientific data, vaccination guidelines, varying international policies, difficulties with vaccine availability, vaccine hesitancy, and a constantly evolving virus.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccination , COVID-19/prevention & control , COVID-19/therapy , Humans , Inpatients , Randomized Controlled Trials as Topic , Vaccination/methods
4.
Nat Microbiol ; 7(6): 896-908, 2022 06.
Article in English | MEDLINE | ID: covidwho-1873507

ABSTRACT

Genetically distinct variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged since the start of the COVID-19 pandemic. Over this period, we developed a rapid platform (R-20) for viral isolation and characterization using primary remnant diagnostic swabs. This, combined with quarantine testing and genomics surveillance, enabled the rapid isolation and characterization of all major SARS-CoV-2 variants circulating in Australia in 2021. Our platform facilitated viral variant isolation, rapid resolution of variant fitness using nasopharyngeal swabs and ranking of evasion of neutralizing antibodies. In late 2021, variant of concern Omicron (B1.1.529) emerged. Using our platform, we detected and characterized SARS-CoV-2 VOC Omicron. We show that Omicron effectively evades neutralization antibodies and has a different entry route that is TMPRSS2-independent. Our low-cost platform is available to all and can detect all variants of SARS-CoV-2 studied so far, with the main limitation being that our platform still requires appropriate biocontainment.


Subject(s)
COVID-19 , SARS-CoV-2 , Australia , COVID-19/diagnosis , Humans , Pandemics , SARS-CoV-2/genetics
5.
Nat Immunol ; 23(2): 210-216, 2022 02.
Article in English | MEDLINE | ID: covidwho-1625648

ABSTRACT

A proportion of patients surviving acute coronavirus disease 2019 (COVID-19) infection develop post-acute COVID syndrome (long COVID (LC)) lasting longer than 12 weeks. Here, we studied individuals with LC compared to age- and gender-matched recovered individuals without LC, unexposed donors and individuals infected with other coronaviruses. Patients with LC had highly activated innate immune cells, lacked naive T and B cells and showed elevated expression of type I IFN (IFN-ß) and type III IFN (IFN-λ1) that remained persistently high at 8 months after infection. Using a log-linear classification model, we defined an optimal set of analytes that had the strongest association with LC among the 28 analytes measured. Combinations of the inflammatory mediators IFN-ß, PTX3, IFN-γ, IFN-λ2/3 and IL-6 associated with LC with 78.5-81.6% accuracy. This work defines immunological parameters associated with LC and suggests future opportunities for prevention and treatment.


Subject(s)
B-Lymphocytes/immunology , COVID-19/complications , Immunity, Innate , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Aged , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Case-Control Studies , Cytokines/blood , Female , Host-Pathogen Interactions , Humans , Inflammation Mediators/blood , Male , Middle Aged , Prognosis , SARS-CoV-2/pathogenicity , Severity of Illness Index , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Time Factors , Post-Acute COVID-19 Syndrome
6.
PLoS Med ; 18(7): e1003656, 2021 07.
Article in English | MEDLINE | ID: covidwho-1298076

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) antibody neutralization response and its evasion by emerging viral variants and variant of concern (VOC) are unknown, but critical to understand reinfection risk and breakthrough infection following vaccination. Antibody immunoreactivity against SARS-CoV-2 antigens and Spike variants, inhibition of Spike-driven virus-cell fusion, and infectious SARS-CoV-2 neutralization were characterized in 807 serial samples from 233 reverse transcription polymerase chain reaction (RT-PCR)-confirmed Coronavirus Disease 2019 (COVID-19) individuals with detailed demographics and followed up to 7 months. A broad and sustained polyantigenic immunoreactivity against SARS-CoV-2 Spike, Membrane, and Nucleocapsid proteins, along with high viral neutralization, was associated with COVID-19 severity. A subgroup of "high responders" maintained high neutralizing responses over time, representing ideal convalescent plasma donors. Antibodies generated against SARS-CoV-2 during the first COVID-19 wave had reduced immunoreactivity and neutralization potency to emerging Spike variants and VOC. Accurate monitoring of SARS-CoV-2 antibody responses would be essential for selection of optimal responders and vaccine monitoring and design.


Subject(s)
Antibodies, Neutralizing/immunology , SARS-CoV-2/pathogenicity , Adult , Antibodies, Viral/immunology , Female , Humans , Male , Middle Aged , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology
7.
Clin Infect Dis ; 72(10): e649-e651, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1232189

ABSTRACT

Our Australian hospital tested almost 22 000 symptomatic people over 11 weeks for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a multiplex polymerase chain reaction (PCR) assay. Following travel bans and physical distancing, SARS-CoV-2 and other respiratory viruses diagnoses fell dramatically. Increasing rhinovirus diagnoses as social control measures were relaxed may indirectly indicate an elevated risk of coronavirus disease 2019 (COVID-19) resurgence.


Subject(s)
COVID-19 , SARS-CoV-2 , Australia/epidemiology , Hospitals , Humans , Prevalence , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL